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The sel f -consis tent  field method enables one to obtain complete and consistent solutions when solving the 
problem of determining pertinent elastic proper t ies  of inhomogeneous or comIx)site media even if they involve 
s trong inhomogeneities and the admixtures are  highly concentrated. The lat ter ,  together with the simplici ty 
and physical c la r i ty  of the basic assumptions for the self -consis tent  field, has at t racted the attention of many 
r e s e a r c h e r s  [1-3]. In [4-6] the concept of se l f -cons is tency was implicitly employed when solving problems for 
a medium containing fields of ellipsoidal tnhom0genetties. In these ar t ic les  the sel f -consis tent  field method 
was employed to analyze a composite medium containing is| random fields of defects (react|174 
medium). The sel f -consis tent  field method can in actual fact be also applied to the corre la ted  or even to the 
regular  s t ruc tures  [7, 8]. A ser ious  obstacle in employing sel f -consis tent  solutions is the lack of any est imates  
for the e r ro r  of a given method when sys tems of the elastic composite medium type are  investigated. Thus, a 
direct  comparison of sel f -consis tent  solutions with the exact ones is of considerable value as a cr i ter ion of 
applicability of the sel f -consis tent  field method in the mechanics of composite media. In the present  ar t ic le  a 
composite medium containing an a rb i t r a ry  random field of ellipsoidal inhomogeneities is investigated. For  the 
is| admixture field and for the case in which the admixtures fo rm a regular  lattice the tensors  of per t i -  
nent elastic proper t ies  of the medium are constructed.  The resul ts  of numerical  evaluations for a cubic lattice 
of is| spherical  admixtures in an is| medium are cited. An analysis of the plane problem enables 
one to compare  the solution obtained by the sel f -consis tent  field method with the exact solutions obtained in [9] 
for regular  admixture lattices. 

w 1. An infinite elastic homogenous medium (the base medium) is considered whose propert ies  fo rm the 
tensor  of the elast ici ty moduli L; the latter contains a homogenous random field of ellipsoidal inclusions with 
the elast ici ty re| L + L l , w h e r e  L 1 is a random tensor  remaining constant within each inclusion. 

It is known (see, for example, [6, 10] , that the deformation tensor  e in a medium with inhomogeneities 
and with applied external field e 0 satisfies the equation 

( r ) + S K ( R ) . L  l (r ' ) .e (r ' )O(r ' )dV'=e  o, R==r--r' ,  (1.1) 
where | is the charac te r i s t ic  function of the domain V occupied by the inclusions (if s is a point of the 
medium whose rad ius -vec tor  is r ,  then | = 1 for s ~ V but @(r) = 0 for s ~  V); dots denote convolution over 
two indices. 

The kernel K{R) of the integral operator  in (1.1) is re la ted to the second derivatives of the Green,s func- 
tion U of the base medium by means  of 

Kij~t(R) := -- [VI~VIUI~(R) l(~)(jz) (1.2) 

(round brackets  represent  symmetr iza t ion  over the relevant  subscripts) .  

Some propert ies  of the operator  K are  now discussed.  

1. On the continuous two-valued tensor functions ~ such that 

K (R) �9 ~b (r') dV' <: oo, 
I R l> t  

this operator  can be defined by the following formula [10, 11]: 
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S K (R). �9 (r') dV" = ~ K(C-I~ --  r ) -  �9 (C-t~) det C-IdV~ -{- A .  r (r), ~ = Cr', (1.3) 

where C is the tensor which determines  a nondegenerate affine t ransformat ion of the three-dimensional  space. 
The  constant tensor  A is equal to 

t y ~ (Ck) dr, (1.4) A----~- 5- 
(rl) 

where K(k) is the Four ie r  t r ans fo rm of the kernel  K(R); r 1 is the a r e a  of unit sphere in the k-space .  The 
integral on the r ight-hand side of (1.3) is understood to be the principal value in the Cauchy sense. 

2. The operat ion of the operator  K on the constant tensors  is expressed by an integral which diverges at 
zero  and at infinity. It can be shown that this integral c .nnot  be uniquely regular ized,  its value being defined by 
the sense it has in the problem under consideration. 

Let L! in(1.1) be a constant tensor  and let also the s t r e s s  field in the medium be constant and equal to the 
external field ~0 = L .  ~0- It is obvious that in this case  the deformation tensor  of the medium is 

= (L + L~)-1.a0. 

On the other band, the solution of Eq. (1.1) has this par t icular  form if the regular izat ion of the integral expres-  
sing the operation of the opera tor  K over  the constant two-valued tensors  ,I s is defined by the relat ion 

K (R) �9 q~odV -~ G.  (I)0, G = L -~. (1.5) 

Such regular iza t ion in the above-shown meaning will be used by us later  on. 

For  the deformation field ~ inside the inclusions (in the domain V) we have an equation which is a coro l -  
l a ry  of (1.1): 

0 (r)e (r) § y K (R) �9 L 1 (r'). e (r') 0 (r') 0 (r) dV'  = 0 (r) e n. (!.6) 

It is noticed that the solution is continued in a unique m~nner into the domain ~ (a complement of V with 
respec t  to the entire space) if {: i sknown inside V; this follows direct ly  f rom (1.1). 

w Now let the external field be homogenous (constant). 

The suppositions of the se l f -consis tent  field method when applied to the problem under considerat ion can 
be formulated in ~he following way: 1) each insert ion of an actual real izat ion of a random field of inhomogenei- 
ties is considered as a separa te  ellipsoidal inclusion into the basic medium; 2) the deformation field 7: in which 
all inclusions a re  found consis ts  of the external field $:0 and of the field induced by the surrounding inhomoge- 
nettles. It is assumed that this field is the same for all inclusions; an approximation is to be made available 
for the equivalent field ~.. It is assumed that the field ~. is constant. This is valid within the volume occupied 
by a typical inclusion, the total field due to all the surrounding inhomogeneities varying only slightly. * 

If the field ~ is constant,  then within the f ramework of the se l f -consis tent  field method the deformation 
field inside each inclusion (the lat ter  following f rom the resu l t s  of [10]) is of the fo rm 

e ---- (I § A. L1) -1 .~ ,  (2.1) 

where I is the identity four-valued tensor.  The tensor A is of the form (1.4), and the tensor C ,whichappears  
in the definition of A, de termines  an affine t ransformat ion  which t r ans fo rms  the ellipsoid domain occupied by 
the inclusion into a ball. 

An equation for the equivalent field ~ is obtained by substituting (2.1) into (1.6) and by averaging the resu l t  
over the ensemble of inclusion fields: 

( ( 0  (r) [I § A (r) �9 L~ (r)]-~) § y K (B).  (L1 (r').  [I §  (r').Lx (r')] -~ (9 (r') 0 (r))  dV'}-~ ---- peo,  (2.2) 

where p=  (| is the concentrat ion of inclusions. 

Let us now consider  the average  appearing under the integral sign in (2.2): 

: (Ll(r'). [I -~- A(r').Ll(r')]--aO(r')O(r)). 

*This fo rm of the se l l -cons is tent  field method differs f rom the one adopted, for example, in [2] in that each 
inclusion is regarded  as isolated in a medium with elast ic proper t ies  equal to the pertinent proper t ies  of a com-  
posite medium, the field in which any inclusion is located being assumed equal to the external field e0- 
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When averaging over  the ensemble of inclusion fields the contribution toward this average  is only given 
by those rea l iza t ions  for  which | (r)| {r,)-: 1, that is, the points r and r ,  must s imul taneously  enter  the domain 
V occupied by the inclusions. The sought average  for homogenous inclusion fields can be r ep resen ted  by the 
s u m  

(Lx(r'). [I + A(r').L~(r')]-X0(r'i0(r)) = ~o (R) + T(R), (2.3) 

where  @0(B) is a par t  which is re la ted  to the points r and r '  finding themselves  in the same inclusions, whereas  
(R) is a par t  r e la ted  to the points finding themselves  in different  inclusions. 

An e lementa ry  geomet r ic  analysis  enables one to r ep r e sen t  the function ~00~) in the fo rm 

T0(R) = (Lx. [I + A.Lx l - t ( t /Vo )J (R ,  cx, e~, es, Q)), (2.4) 

where  JOR, el, c 2, c 3, Q) is the volume inside the ell ipsoidal  domain occupied by an inclusion with the s emi -  
axes  el,  c2, c 3 (the or ienta t ion in space of an inclusion is de termined  by an orthogonal random tensor  Q) and if 
the point r ,  finds i tself  in this domain, then the point r must  also be there .  The averaging in (2.4) is c a r r i e d  
out over  the ensemble  of distr ibution functions of the inclusion dimensions and thei r  p roper t ies ;  V 0 is t hemean  
volume per  one inclusion. By affine t ransformat ion  C(~= CR), whi.ch t r ans fo rms  the ell ipsoid into a unit ball,  
the function J i l t ,  el ,  c2, c3, Q) is mapped into the spher ica l ly  symmet r i ca l  function 

It is noticed,  moreove r ,  that 

/ (c-x~)  = d'(l~ I). 

J ( 0 ,  el ,  c~, c3, 0.) -~ vr and ]---~ 0 as IRI -~ ~o ,  

where  v e = (4/3)rclc~c z i s the  volume of the el l ipsoid with the semiaxes  cl, c~, c 8. 

The i n t e g r a l  

(2.5) 

•  ( I [ l )  det C-'dV~> :/v,\V~_o A.  L x �9 (I + A .  L,) - t )  (2.6) 

is now evaluated. 

The last  equali ty resu l t s  f r om (1.3) if one takes into account that in the case  in which J '  (}) is a spher i -  
cal ly  symmet r i ca l  function the pr incipal  value of the integral  appearing in (2.6) equals zero .  One substi tutes 
(2.3) into (2.2); a f te r  some fa i r ly  s imple t rans format ions  one obtains by using (2.5) the equation for the equiva- 
lent field ~ in the f o r m  

[i + _~_SK ( R ) . ,  (R) dV]. ~ =  s0 ' (2.7) 

where  the equality 

\ 

( e  (r) Lx (r) �9 [I ~- A (r) �9 Lx (r)]-i~ = L~. (I + A.  L1)-i,~ 

is used which is valid for  homogeneous ergodic inclusion fields.  The averaging on the left-hand side is over  
the ensemble  of rea l iza t ions  of the random field, and on the r ight  the averaging is over  a random quauti tywhose 
distribution function can be de termined by the ensemble  of distr ibution functions of the inclusion dimensions and 
thei r  p roper t i es .  

It follows f r o m  (2.1) and (2.7) that the deformation within any inclusion is de termined within the f r a m e -  
work of the se l f -cons is ten t  field method b y  the express ion  

e =  (I + A.  L~) - 1 .  [I + +  S K ( R ) ' "  (R)dV] - l .  e o. (2.8) 

Moreover ,  let  the medium be acted upon by an external  s t r e s s  f ield ~r 0 re la ted  to the field % by the obvious 
re la t ion 

e0 = G'~0. 

Then the mean deformation ( E )  of the medium with inclusions is obtained by substituting (2.8) into (1.1) and by 
averaging the r e su l t  over  the rea l iza t ion  ensemble:  
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< e > = G . % - - ~ K ( R ) - < L x ( I + A . L 1 ) - ~ . [ I + - - - t p  S K ( R ) •  

/ r e ,  ( I + A . L 1 ) - t >  X W (R) dV]- lO (r')> dV' �9 G �9 o o = G .  a o - -  G . ~ T o , ~ l .  X 

t dV] - i .  G o o.  • i t  + -~-- y K  (R) �9 W (R) (2 ~ 

The l a s t  equali ty follows f r o m  (1.5). 

We now introduce the t ensor  of  per t inent  e las t ic  pl iabi l i ty  of a med ium with inclusions by means  of the 
re la t ion  

<~>= c~-a0. 

Hence and f r o m  (2.9) one obtains 

(~ =: G -- G �9 fl\V-~-o''ct.ul . ( I  + A - L 1 ) ' i >  - [ I +  + y K (R) .V  (R)dV]-f �9 G. (2.10) 

To be able to cons t ruc t  the function $ OR) under the integral  sign on the r ight -hand side of the above ex-  
p re s s ion  one must  have a specif ic  model  of the r andom field of inclusions in the medium.  Two ex t r e me  cases  
will be cons idered:  the r andom  field of  inclusions is homogenous and isotropic;  the inclusions f o r m  a r egu la r  
lat t ice.  

A. Fo r  an isot ropic  field the function @(R) [the express ion  (2.3)] is spher i ca l ly  s y m m e t r i c a l  (it depends 

only on ~ I  and it tends ~o px,,V~0 ~1.(I-  r at infinity). Moreover ,  for all  ea ses  the condition ~(0)=0 is 

valid,  s ince one excludes the poss ib i l i ty  of one point being covered  by  two different  inclusions (the inclusions 
a r e  not intersect ing) .  

The in tegra l  in (2.10) is now evaluated for  this case  by employing the regu la r iza t ion  (1.3), (1.5): 

~ %  1L 

/ 
�9 L 1 ) - l >  = • (1 + A.  L1)-'>] + G. L ,  (1 + A 

= (G_Ao)  / t , ,  . ( I + A  L~)-~3, (2.11) 
/ 

By substi tut ing this  r e su l t  in (2.10), one obtains for  the tensor  of per t inent  e las t ic  pl iabi l i ty  G E and 
per t inent  e las t ic  moduli L E = GE-1 the expres s ions  

C~ = G - - G .  ~ 0 0  L1. ( I + A .  �9 . \~oo ,~ 
(2.12) 

I.E= L + / V ' [  . ( I + A - L 1 ) - ' >  " [ I - -Ao \,~-0,,-,I 

The tensor  A 0 in (2.11) and (2.12) is de te rmined  by the re la t ion  (1.4) for C =1 (1 is the identity two-valued ten-  . 
sor) .  

A s i m i l a r  r e su l t  was obtained in [6]. If the inclusions a r e  spher i ca l  in shape,  then the express ions  (2.12) 
for  LE and G E a r e  identical  with those obtained in [5]. 

B. The case  of identical  inclusions fo rming  a la t t ice  is now considered.  For  s impl ic i ty ,  an isotropic  
ba se  med ium and sphe r i ca l  i so t ropic  inclusions a r e  only considered.  In this case  the r e ~ t i o ~ s  (2.12) become  

GE= G --  pG . L~ . (I  + A . L~ + -~- y K (R) S (R) dV . LO-~;  

I~ = L + pLx : ( I  + A . LI - -  pG . LI + --~- ~ K (R) S (R) dV . LI) - i ,  
( 2 . 1 3 )  

In this case  the components  of the t enso r s  K(R) and A a r e  given by the re la t ions  

t [ R~RI\ 
K~jhz (R) ---- - -  t6a~t (1 -- ~,) R3 [2 (2v - -  t) (Sij~kt - -  3 8 ~ 1 ~ ,  ) + 
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nsRt~ 3 t~ o o 

At, , [ io (i_.,,, (.8,.,8,,, + 

n = l a l ;  

where  ?t is the shea r  modulus;  v is the Poisson  coeff icient  for the e las t ic  m e d i u m . : T h e  fun_ction S(R)- in (2..13) 
is given by 

S(R) =<O(r)0(r ')) ' ,  

where  the dash outside the ave rag ing  symbol  indicates that only those  rea l i za t ions  a r e  taken into account  for  
which the points r a n d  r '  fa l l  within different  inclusions.  Let a (l~, a(2}, a (3) be a t r i p l e  of vec to r s  specifying the 
e l e m e n t a r y  Brava i s  cel l  of a la t t ice  whose nodes a r e  at  the cen te r s  of the inclusions.  A s imple  geomet r i ca l  
sc ru t iny  r e su l t s  in the following ex t~ess ion  for  S01): 

S (R) = ~ '  Y (R - -  ka r ma <2)- na r (2.14) 

(the dash  at the s ide of the summat ion  symbol  indicates the omiss ion  of the t e r m  k = m = n = O )  and 

~ . r (R)=  _ 2 t + : r o  
P 0 for R > 2r0, 

where  r 0 is the rad ius  of the inclusions;  Jo l )  is unders tood in the s a m e  sense  as in (2.4). 
zatton of (1.3) and (1.5) one can r e p r e s e n t  the in tegral  of (2.13) in the f o r m  

t 

where  the las t  in tegra l  is unders tood as the pr inc ipa l  value in the Cauchy sense  and converges  to SOl) in the 
(2.14) and (2.15) fo rm .  If the inclusions f o r m  a cubic la t t ice ,  then the in tegral  in (2.13) is equal to 

By using the r e g u l a r i -  

__tp S K (R) S (R) dV = p (G --  A) + a (p) M. 

The components  of the tensor  M a r e  given by 

~t ( t - -  v) M~jkz = 8ijSht -4- 8ihSSl + 8~,Sjk 5a--~ ~ ,,~n),J~)~(,)~(~) 

and ttae s c a l a r  coef f ic ien t  a is given by the in tegral  

2 2 21<12 2R2 = 5 {% (p) 16zp ,) 

(2.16) 

n = i ,  2, 3, (2.17) 

again  unders tood as its pr incipal  value in the Cauchy sense .  

This in tegral  was n u m e r i c a l l y  evaluated for  the function SOl) given by  (2.14) and (2.15). The coefficient  
aga ins t  the inclusion densi ty  p is shown in Fig. 1. 

Substituting (2.16) in (2.13), one finds that  the t enso r s  of the e las t ic  p rope r t i e s  of a med ium which con-  
ta ins  a cubic inclusion la t t ice  a r e  of the f o r m  

C~ = G - -  pG.Li- [I + p6 .L  1 + (i - -  p)A.Lt -}- ~(P)M]--I"G; 

L E = L + pL1. [I + (l - -  p)A-Lt + 0~(p)M] -1. 

It  is obvious that  the s y m m e t r y  group of t hese  t en so r s  is identical  with the s y m m e t r y  group of a cube, 
s ince the la t te r  is the s y m m e t r y  group of the t ensor  M [the express ion  (2.17)]. 

w The two-dimensiDnal  p rob l em  is now considered.  In this case  all  const ruct ions  a r e  c a r r i e d  out 
s i m i l a r l y  as for  the th ree -d imens iona l  case .  Fo r  an isot ropic  medium containing isot ropic  c i r cu la r  inclusions 
the t en so r s  of per t inent  e las t ic  p rope r t i e s  a r e  of the f o r m  (2.13). However,  the components  of the t en so r s  K(R) 
and A a r e  given in the case  of two-dimens iona l  s t r e s s e d  s ta te  by 
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(3.2) 

where  the Greek  subsc r ip t s  a s s u m e  the values  1 or  2; I is the identity four -va lued  tensor  in the two-d imen-  
sional  space.  The regu la r i za t ion  of in tegra ls  s i m i l a r  to (1.3), (1.5) a r e  of the s a m e  kind as in the t h r e e - d i m e n -  
sional  case  for  the t ensor  A in the f o r m  of (3.2). Some par t i cu la r  cases  a r e  now considered.  

I. The Random Field of Inclusions Is  Homogenous and Isotropic .  By the s a m e  considera t ions  as  e m -  
ployed for  the th ree -d imens iona l  situation, oneobta ins  the following express ions  for  the tensors  of per t inent  
e las t ic  p rope r t i e s :  

G E = G -  pG.L1- [I + pG.L1 -k (l - -  p)A.L~I-I.G; (3.3) 
LE = L + pLy-[I + (I - -  p)A.L~] -1. 

In the above,  the t ensor  A is of the f o r m  (3.2). 

II. The Inclusions Form a R e g u l a r  Tr iangu la r  Latt ice.  Of course ,  the s y m m e t r y  group of the functions 
S(N) = (|174 , is in this case  identical with the s y m m e t r y  group of the t r i angu la r  lat t ice.  The r e g u l a r i z a -  
t ion of the integral  in(2.13) a s s u m e s  the f o r m  (integration being over  the en t i re  plane) 

K (R) S (R) df~ = p (G --  A) + -~  K (R) iS (R) - -  f l  d•. (3.4) 

The integral  on the r igh t -hand  side is understood as the pr incipal  value in the Cauchy sense  and is con- 
vergent  at ze ro  as well  as  at infinity. The s y m m e t r y  group of this in tegra l  mus t  be  identical  with the s y m m e t r y  
group of the functions Sgt). It is known [12] that the bas i s  for  four-valued t enso r s  which pos se s s  the t r i angu la r -  
la t t ice  s y m m e t r y  cons is t s  of i sot ropic  t enso r s  only. Moreover ,  in view of the s y m m e t r y  of the t ensor  K (R) 
with r e s p e c t  to the cor responding  subscr ip t s ,  one can wr i te  

K~.~ (R) [S (R) - -  p~] d~ = I~ (6~6~ + 2I~,l~). 

The coefficient  fl is obtained by  contract ing both s ides  of the above re la t ion  with r e s p e c t  to all  subscr ip t s ,  

i K = ~ - ;  ~ v ( R )  iS (R) --p~] df~. 

However,  it follows d i rec t ly  f r o m  (3.1) that 

K a ~ ( R )  = 0. 

In view of the above,  the integral  on the r igh t -hand  side of (3.4) vanishes .  By now subst i tut ing the r egu la r i zed  
value of the integral  in (3.4) into (2.13), one finds that in the case  of a r egu la r  t r i angu la r  la t t ice  of inclusions 
the express ion  for  the t ensor  of per t inent  e las t ic  p rope r t i e s  is equal to its express ion  in the case  of the in- 
clusion f ield being homogenous and i so t ropic  as in (3.3). 

In Figs.  2 and 3 the d i ag rams  a re  shown of the r e l a t ive  per t inent  e las t ic i ty  moduli E E / E  and of the shear  
modul i  pE/p of a med ium which contains a r e g u l a r  t r i angu la r  inclusion la t t ice  v e r s u s  the inclusion concentrat ion for 
different  values  of thei r  e las t ic i ty  p a r a m e t e r s ;  they w e r e  computed by using the fo rmulas  (3.3) (E~ is the e l a s -  
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t ic i ty  modulus of the inclusions).  The Poisson coefficient  of  the medium and of the inclusions is v =0.3. Also 
shown a r e  the graphs  of these  quanti t ies  which w e r e  evaluated exact ly  by using the methods developed in [9] 
for  solving b iper iodic  p r o b l e m s  of e las t ic i ty  theory  (solid curves  show the exact  solution; dashed ones with 
sma l l  c i r c l e s  co r r e spond  to the solutions obtained by  the se l f - cons i s t en t  f ield methods).  

HI. The Inclus ions  F o r m  a Quadra t ic  La t t i ce .  I f  one r e g u l a r i z e s  the in tegral  in (2.13) by using (3.4), one 
can cons ider  the pr inc ipa l  value of the in tegral  

l p  3 f K (R)[S (R) - -  p'] d~ 

for  this case .  It is obvious that the s y m m e t r y  group of this in tegral  is identical  with the s y m m e t r y  group of 
the functions S(R) and, consequently,  with the s y m m e t r y  group of a square .  B y  expanding this in tegral  in t e r m s  
of four -va lued  t e n s o r s  of  the cor responding  s y m m e t r y  [12] and calculat ing the coeff icients  of the expansion,  one 
obtains 

4 f K (R) iS (R) - -  P~l dQ = aM. (3.5) 
F J 

The components  of the t ensor  M a r e  

2 
LLt a fi u ~  a 6  , t + v M~z~6 ~ ~z~8~5 + 21afi'~6 - -  4a --~ X a(1)a(i)~(i)"(i) 

i = l  

where  a (1) and a(2) a r e  vec t o r s  equal to the s ide of the square ,  a = J a (i) ] . 

The coeff icient  a is given in an in tegra l  f o r m  in the pr inc ipa l  value sense ,  

(3.6) 

2 9. 
i f iS (R) --  p~] a nlR2 ~ dO. 

The express ion  for  the function SOR) is in this case  given by 

s (n) = j ( n -  ka ( ' ) -  m. ( -% 
h , r a ~ - - ~ o  

where  the dash indicates that  the t e r m  k = m  = 0 is omit ted:  

(3.7) 

(3.8) 

2 8 0  



{o [ Tt  ] ' (R)= arctg ~ i - - ~  - - ~ V  i - -  ~ for R • 2 r  o (3.9) 

for R > 2r 0 

(r 0 is the radius  of the inclusions).  

The  dependenoe ~(p) obtained by  numer ica l  in tegra t ion of (3.7), where  S(R) is of  the f o r m  (3.8) and (3:9), 
is  shown in Fig .  4. By now subst i tut ing (3.5) into (3.4) and subst i tut ing the r e su l t  into the express ion  (2.13), 
for  the t en so r s  of  per t inent  p r o p e r t i e s  one obtains 

G E = G - -  pG.Li. [I + / G . L  t + ( i - - p )  A.Li + r 

[ E  = L + pLy. [I + (! - -  p)A-L~ + r 
(3.i0) 

where  the t ensor  A is of the f o r m  (3.2) and the tensor  M and the coefficient  a a r e  given by the re la t ions  (3.6) 
and (3.7). 

In Figs.  5-7 the graphs  a r e  shown of the re la t ive  effect ive e las t ic i ty  p a r a m e t e r s  for  a square  inclusion 
la t t ice  evaluated by  using the fo rmula  (3.10). The exact  values  given in [9] a r e  also shown (solid cu rves  show 
the exact  solution; dashed ones with c i r c l e s  a r e  solutions obtained by the se l f - cons i s t en t  field method). 

It can be seen by analyzing these  d i ag rams  that  for r egu la r  s t r u c t u r e s  cons idered  he re  the solution by the 
se l f - cons i s t en t  field method a lmos t  coincides with the exact  solution provided the ra t io  of the medium e las t ic i ty  
modulus to that of the inclusions r e m a i n s  within the l imi ts  0.1 _< E / E  1 _< 10. For  E / E  1 >10 or  for  E / E  1 < 0.1 
s ta r t ing  with the inclusion concentra t ions  of p ~ 0.4 the solutions obtained by the se l f - cons i s t en t  field method 
p o s s e s s  an e r r o r  which inc reases  with higher  concentra t ions .  

The re fo re ,  the assumpt ions  of the se l f - cons i s t en t  f ield method enumera ted  in Sec. 2 a r e  sa t i s fac to r i ly  
fulfilled in the analyzed cases .  The accu racy  in fulfilling these  assumpt ions  dep~mds, on the one hand, on the 
c h a r a c t e r  of  the in teract ion of the inhomogenei t ies  in the e las t ic  medium (in pa r t i cu la r ,  on the in terac t ion:  
constants  E / E  i and p), and on the other  hand, on the speci f ic  shape of a r egu la r  s t ruc tu re .  One has r e a so n s  to 
a s s u m e  that  the dependence on the s t ruc tu re  is suff icient ly "smooth"  and that the se l f - cons i s t en t  field aP-  
proximat ion  is,  t he re fo re ,  acceptab le  for  a wide r ange  of different  s t r u c t u r e s ,  in pa r t i cu la r ,  for  a widd  "neigh-  
borhood,, of the s i tuat ions analyzed here.  

It is noticed that  in the case  of r egu l a r  s t r u c t u r e s  the assumpt ion  that all  inclusions a r e  found in the s a m e  
equivalent field ~ is fulfil led exact ly.  Subsequent improvemen t s  a r e  thus poss ib le  within the f r a m e w o r k  of the 
se l f - cons i s t en t  field method by employing a m o r e  accura t e  approximat ion  of the mean field 6. 

When the s tochas t ic  inclusion fields [7] a r e  invest igated,  the p rob lem a r i s e s  of analyzing the par t  played 
by the f luctuations of the t rue  s t r e s s  and s t r a in  f ields in the neighborhood of each inclusion. It is known [13] 
that the applicat ion of the se l f - cons i s t en t  field method to desc r ibe  phase  t rans i t ions  is the m o r e  just if ied the 
s lower  the potential  is at tenuated due to an individual pa r t i c l e  mid the s m a l l e r  the dis tances  between the p a r -  
t ic les .  In pa r t i cu la r ,  the se l f - cons i s t en t  f ield methods produce good r e su l t s  for  pa r t i c les  with the Coulomb- 
type 1 / R  potential.  

In the case  of an e las t ic  composi te  medium,  thepotent ia l  of each s e p a r a t e  pa r t i c l e  (inclusion) behaves  at 
infinity as 1 /R in the two-d imens iona l  ca se  and as 1 /R # in the t h r ee -d imens iona l  case .  It is th-erefore to be  
expected that the se l f - cons i s t en t  field method for  s tochas t ic  inclusion fields will  p rove  fully acceptable  and 
m o r e  accu ra t e  in two-d imens iona l  p r o b l e m s .  

The author would like to exp res s  his thanks to T. M. ~ l ' kovskaya  for  her  a s s i s t ance  in c a r ry ing  out the 
computat ions.  
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